FERONIA/FER-like receptor kinases integrate and modulate multiple signaling pathways in fruit development and ripening
نویسندگان
چکیده
Ripening of fleshy fruits is a complex process that involves dramatic changes in color, texture, flavor, and aroma, which is essentially regulated by multiple hormone signals. Although the metabolic mechanisms for the regulation of fruit development and ripening have been studied extensively, little is known about the signaling mechanisms underlying this process. FERONIA has been increasingly suggested to be implicated in multiple signaling pathways. In a recent publication, we showed that a FERONIA/FER -like receptor kinase, FaMRLK47, playes an important role in the regulation of fruit ripening in strawberry (Fragaria × ananassa, a typical non-climacteric fruit) fruit. Over-expression orRNAi-mediated down regulation of FaMRLK47 caused a delay or acceleration, respectively, of fruit ripening progress. Meanwhile, overexpression orRNAi-mediated down regulation of FaMRLK47 caused a decrease or increase, respectively, in the ABA-induced expression of a series of ripening-related genes. More recently, we also found that MdFERL1, a FERONIA/FER-like receptor kinase in tomato plant, was implicated in the regulation of tomato fruit ripening via modulating ethylene production. We propose that FERONIA/FER-like receptor kinases may function to regulate fruit development and ripening via integrate multiple signaling pathways in both climacteric and non-climacteric fruits.
منابع مشابه
Two FERONIA-Like Receptor Kinases Regulate Apple Fruit Ripening by Modulating Ethylene Production
Ethylene has long been known to be a critical signal controlling the ripening of climacteric fruits; however, the signaling mechanism underlying ethylene production during fruit development is unknown. Here, we report that two FERONIA-like receptor kinases (FERLs) regulate fruit ripening by modulating ethylene production in the climacteric fruit, apple (Malus×domestica). Bioinformatic analysis ...
متن کاملA FERONIA-Like Receptor Kinase Regulates Strawberry (Fragaria × ananassa) Fruit Ripening and Quality Formation
Ripening of fleshy fruits is controlled by a series of intricate signaling processes. Here, we report a FERONIA/FER-like receptor kinase, FaMRLK47, that regulates both strawberry (Fragaria × ananassa) fruit ripening and quality formation. Overexpression and RNAi-mediated downregulation of FaMRLK47 delayed and accelerated fruit ripening, respectively. We showed that FaMRLK47 physically interacts...
متن کاملThe receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling.
In plants, perception of invading pathogens involves cell-surface immune receptor kinases. Here, we report that the Arabidopsis SITE-1 PROTEASE (S1P) cleaves endogenous RAPID ALKALINIZATION FACTOR (RALF) propeptides to inhibit plant immunity. This inhibition is mediated by the malectin-like receptor kinase FERONIA (FER), which otherwise facilitates the ligand-induced complex formation of the im...
متن کاملThe Receptor-like Kinase FERONIA Is Required for Mechanical Signal Transduction in Arabidopsis Seedlings
Among the myriad cues that constantly inform plant growth and development, mechanical forces are unique in that they are an intrinsic result of cellular turgor pressure and also imposed by the environment. Although the key role of mechanical forces in shaping plant architecture from the cellular level to the level of organ formation is well established, the components of the early mechanical si...
متن کاملGlycosylphosphatidylinositol-anchored proteins as chaperones and co-receptors for FERONIA receptor kinase signaling in Arabidopsis
The Arabidopsis receptor kinase FERONIA (FER) is a multifunctional regulator for plant growth and reproduction. Here we report that the female gametophyte-expressed glycosylphosphatidylinositol-anchored protein (GPI-AP) LORELEI and the seedling-expressed LRE-like GPI-AP1 (LLG1) bind to the extracellular juxtamembrane region of FER and show that this interaction is pivotal for FER function. LLG1...
متن کامل